实验二:支持向量机分类实验

一 实验目的

  1. 了解支持向量机的基本原理,几何间隔函数间隔等基础概念
  2. 了解支持向量机的优缺点和适用场景
  3. 学会使用R语言建立SVM分类模型

二 实验原理

支持向量机(support vector machines,SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming,不怕,附录有解释)的问题,也等价于正则化的合页损失函数(后面也有解释)的最小化问题。支持向量机的学习算法是求解凸二次规划的最优化算法。

下文将带您学习到支持向量机如何工作,以及如何利用R语言实现支持向量机分类算法。

线性分类

下面举个简单的例子,如下图所示,现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示。由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是 -1 ,另一边所对应的y全是1。

这个超平面可以用分类函数表示,当f(x) 等于0的时候,x便是位于超平面上的点,而f(x)大于0的点对应 y=1 的数据点,f(x)小于0的点对应y=-1的点,如下图所示:

函数间隔与几何间隔

在超平面w*x+b=0确定的情况下,|w*x+b|能够表示点x到距离超平面的远近,而通过观察w*x+b的符号与类标记y的符号是否一致可判断分类是否正确,所以,可以用(y*(w*x+b))的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。

定义函数间隔(用表示)为:

而超平面(w,b)关于T中所有样本点(xi,yi)的函数间隔最小值(其中,x是特征,y是结果标签,i表示第i个样本),便为超平面(w, b)关于训练数据集T的函数间隔:= mini (i=1,...n)

但这样定义的函数间隔有问题,即如果成比例的改变w和b(如将它们改成2w和2b),则函数间隔的值f(x)却变成了原来的2倍(虽然此时超平面没有改变),所以只有函数间隔还远远不够。事实上,我们可以对法向量w加些约束条件,从而引出真正定义点到超平面的距离--几何间隔(geometrical margin)的概念。假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量,为样本x到分类间隔的距离,如下图所示:

,其中||w||表示的是范数。

又由于 x0 是超平面上的点,满足 f(x0)=0 ,代入超平面的方程即可算出:(有的书上会写成把||w|| 分开相除的形式,如本文参考文献及推荐阅读条目11,其中,||w||为w的二阶泛数)为了得到的绝对值,令乘上对应的类别 y,即可得出几何间隔(用表示)的定义:从上述函数间隔和几何间隔的定义可以看出:几何间隔就是函数间隔除以||w||,而且函数间隔y*(wx+b) = y*f(x)实际上就是|f(x)|,只是人为定义的一个间隔度量,而几何间隔|f(x)|/||w||才是直观上的点到超平面的距离。

最大间隔分类器

对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔如下图中的gap / 2所示。

通过由前面的分析可知:函数间隔不适合用来最大化间隔值,因为在超平面固定以后,可以等比例地缩放w的长度和b的值,这样可以使得的值任意大,亦即函数间隔可以在超平面保持不变的情况下被取得任意大。但几何间隔因为除上了

,使得在缩放w和b的时候几何间隔的值是不会改变的,它只随着超平面的变动而变动,因此,这是更加合适的一个间隔。所以,这里要找的最大间隔分类超平面中的“间隔”指的是几何间隔。

于是最大间隔分类器(maximum margin classifier)的目标函数可以定义为:同时需满足一些条件,根据间隔的定义,有


其中,s.t.,即subject to的意思,它导出的是约束条件。回顾下几何间隔的定义可知:如果令函数间隔等于1,则有 = 1 / ||w||且,从而上述目标函数转化成了

这个目标函数便是在相应的约束条件下,最大化这个1/||w||值,而1/||w||便是几何间隔

如下图所示,中间的实线便是寻找到的最优超平面(Optimal Hyper Plane),其到两条虚线的距离相等,这个距离便是几何间隔,两条虚线之间的距离等于2,而虚线上的点则是支持向量。由于这些支持向量刚好在边界上,所以它们满足(还记得我们把 functional margin 定为 1 了吗?上节中:处于方便推导和优化的目的,我们可以令=1),而对于所有不是支持向量的点,则显然有

三 实验步骤

让我们看一下如何使用支持向量机实现二元分类器,使用的数据是来自MASS包的cats数据集。在本例中你将尝试使用体重和心脏重量来预测一只猫的性别。我们拿数据集中20%的数据点,用于测试模型的准确性(在其余的80%的数据上建立模型)。

#安装本次程序需要的数据包
install.packages("MASS")
install.packages("e1071")

# Setup
library(e1071)
data(cats, package="MASS")
inputData <- data.frame(cats[, c (2,3)], response = as.factor(cats$Sex)) # response as factor

线性支持向量机

传递给函数svm()的关键参数是kernel、cost和gamma。Kernel指的是支持向量机的类型,它可能是线性SVM、多项式SVM、径向SVM或Sigmoid SVM。Cost是违反约束时的成本函数,gamma是除线性SVM外其余所有SVM都使用的一个参数。还有一个类型参数,用于指定该模型是用于回归、分类还是异常检测。但是这个参数不需要显式地设置,因为支持向量机会基于响应变量的类别自动检测这个参数,响应变量的类别可能是一个因子或一个连续变量。所以对于分类问题,一定要把你的响应变量作为一个因子。

# linear SVM
svmfit <- svm(response ~ ., data = inputData, kernel = "linear", cost = 10, scale = FALSE) # linear svm, scaling turned OFF
print(svmfit)
plot(svmfit, inputData)
compareTable <- table (inputData$response, predict(svmfit))  # tabulate
mean(inputData$response != predict(svmfit)) # 19.44% misclassification error

径向支持向量机

径向基函数作为一个受欢迎的内核函数,可以通过设置内核参数作为“radial”来使用。当使用一个带有“radial”的内核时,结果中的超平面就不需要是一个线性的了。通常定义一个弯曲的区域来界定类别之间的分隔,这也往往导致相同的训练数据,更高的准确度。

# radial SVM
svmfit <- svm(response ~ ., data = inputData, kernel = "radial", cost = 10, scale = FALSE) # radial svm, scaling turned OFF
print(svmfit)
plot(svmfit, inputData)
compareTable <- table (inputData$response, predict(svmfit))  # tabulate
mean(inputData$response != predict(svmfit)) # 18.75% misclassification error

寻找最优参数

你可以使用tune.svm()函数,来寻找svm()函数的最优参数。

### Tuning
# Prepare training and test data
set.seed(100) # for reproducing results
rowIndices <- 1 : nrow(inputData) # prepare row indices
sampleSize <- 0.8 * length(rowIndices) # training sample size
trainingRows <- sample (rowIndices, sampleSize) # random sampling
trainingData <- inputData[trainingRows, ] # training data
testData <- inputData[-trainingRows, ] # test data
tuned <- tune.svm(response ~., data = trainingData, gamma = 10^(-6:-1), cost = 10^(1:2)) # tune
summary (tuned) # to select best gamma and cost
# Parameter tuning of 'svm':
#   - sampling method: 10-fold cross validation
#
# - best parameters:
#   gamma cost
# 0.001  100
#
# - best performance: 0.26
#
# - Detailed performance results:
#   gamma cost error dispersion
# 1  1e-06   10  0.36 0.09660918
# 2  1e-05   10  0.36 0.09660918
# 3  1e-04   10  0.36 0.09660918
# 4  1e-03   10  0.36 0.09660918
# 5  1e-02   10  0.27 0.20027759
# 6  1e-01   10  0.27 0.14944341
# 7  1e-06  100  0.36 0.09660918
# 8  1e-05  100  0.36 0.09660918
# 9  1e-04  100  0.36 0.09660918
# 10 1e-03  100  0.26 0.18378732
# 11 1e-02  100  0.26 0.17763883
# 12 1e-01  100  0.26 0.15055453

结果证明,当cost为100,gamma为0.001时产生最小的错误率。利用这些参数训练径向支持向量机。

svmfit <- svm (response ~ ., data = trainingData, kernel = "radial", cost = 100, gamma=0.001, scale = FALSE) # radial svm, scaling turned OFF
print(svmfit)
plot(svmfit, trainingData)
compareTable <- table (testData$response, predict(svmfit, testData))  # comparison table
mean(testData$response != predict(svmfit, testData)) # 13.79% misclassification error


F   M
F   6   3
M  1   19

网格图

一个2-色的网格图,能让结果看起来更清楚,它将图的区域指定为利用SVM分类器得到的结果的类别。在下边的例子中,这样的网格图中有很多数据点,并且通过数据点上的倾斜的方格来标记支持向量上的点。很明显,在这种情况下,有很多越过边界违反约束的点,但在SVM内部它们的权重都被降低了。

# Grid Plot

n_points_in_grid = 60 # num grid points in a line

x_axis_range &lt;- range (inputData[, 2]) # range of X axis

y_axis_range &lt;- range (inputData[, 1]) # range of Y axis

X_grid_points &lt;- seq (from=x_axis_range[1], to=x_axis_range[2], length=n_points_in_grid) # grid points along x-axis

Y_grid_points &lt;- seq (from=y_axis_range[1], to=y_axis_range[2], length=n_points_in_grid) # grid points along y-axis

all_grid_points &lt;- expand.grid (X_grid_points, Y_grid_points) # generate all grid points

names (all_grid_points) &lt;- c(&quot;Hwt&quot;, &quot;Bwt&quot;) # rename

all_points_predited &lt;- predict(svmfit, all_grid_points) # predict for all points in grid

color_array &lt;- c(&quot;red&quot;, &quot;blue&quot;)[as.numeric(all_points_predited)] # colors for all points based on predictions

plot (all_grid_points, col=color_array, pch=20, cex=0.25) # plot all grid points

points (x=trainingData$Hwt, y=trainingData$Bwt, col=c(&quot;red&quot;, &quot;blue&quot;)[as.numeric(trainingData$response)], pch=19) # plot data points

points (trainingData[svmfit$index, c (2, 1)], pch=5, cex=2) # plot support vectors

四 常见问题:

  1. 支持向量机如何工作?
    简单介绍下支持向量机是做什么的:

    假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大。有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们的重要性。这种情况下,“支持向量”就是那些落在分离超平面边缘的数据点形成的线

  2. 无法确定分类线(线性超平面)时该怎么办?
    此时可以将数据点投影到一个高维空间,在高维空间中它们可能就变得线性可分了。它会将问题作为一个带约束的最优化问题来定义和解决,其目的是为了最大化两个类的边界之间的距离。

  3. 我的数据点多于两个类时该怎么办?
    此时支持向量机仍将问题看做一个二元分类问题,但这次会有多个支持向量机用来两两区分每一个类,直到所有的类之间都有区别。

results matching ""

    No results matching ""